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The effects of thermal memory on the propagation of delta-function and unit- 
step function temperature pulses in a semiinfinite medium are discussed. It 
is shown that an amplifying thermal medium is possible. 

The conduction of heat in a medium with fading thermal memory of the Nunziato [i] form 
is governed by a pair of linearized integral relations and the conservation law for the in- 
ternal energy: 

o d'~ 

~o (1) 
e (x, t) = eo + q (0) u Ix, t) + .[ . (x, t -  ~)dr ; 

ao o dr 

Oe 
=--divq-l-btx,  /); x > O ;  t > O .  

Here ,  u ( x ,  t )  = T(x ,  t )  -- T(x,  0) and we t a k e  u ( x ,  0) = 0 and b = 0. The boundary  c o M t t i o n  
u(0, t) ffi uo(t) is specified at x = 0. We take the Laplace transform of (i) with respect to 
t and x. Then, taking into account the initial condition and boundary condition, we find 
the solution for an arbitrary damping thermal medium [2] : 

u (x, t) = ] u (o, t - -  ~) a ~, d'c Ifo (p) = l~ pCl (p~/,% (p) ; 
0 

q(x, t ) =  S q(O' t - - z )  a T, d'r 
0 

o(, +o)=,.ox, I �9 ] �9 ~a-~ -KO(p) ; 

~o L-'[ /(o(p) Uo(p)]. U (0, 0 = Uo~t); q (0, 0 = F - ~ o  S (p) 

(2) 

The expansion of the relaxation kernel in a Taylor series in powers of t gives an approximate 
solution for small times to an arbitrary order of approximation N (see [2]). 

It is of interest to consider an idealized problem where a delta-function pulse originat- 
ing at the boundary [u(0, t) = ~(t)] propagates in the medium. It follows from (2) that 

u(x! t ) = a  t, x . 
(3) 

q(x~ t ) - -  !q(O, t - -T )  a T, . dx; q(O, t ) - -  V'~'o 
_ _  L_, [Ko(p)]  

L J 
In a Fourier medium, a power series expansion in t [2, 3] can be used in (3)for small values 
of the time. Then we have 

Scientific-Research Institute of the Rubber Industry, Leningrad Office. 
from Inzhenero-Fizicheskii Zhurnal, Vol. 46, No. 6, pp. 1002-1007, June, 1984. 
article submitted May 17, 1983. 

T r a n s l a t e d  
Original 

728 0022-0841/84/4606-0728508.50 �9 1984 Plenum Publishing Corporation 



N t 
1 [ --X ~t dlX C [ d l x 2  

u(x, t)= E--~-. I-~--~--o, 1 21~.1 exp 4ao(t--~) 
l= 1 0 

do(t--~),, [k~l(7~) + o(gar-~)] ~ ) ~  + 2 ]/'aout ~ 4aot d~ ' 
d~ 

q(x, t) --- n 1/':t ( t - -  t F(m--  1/2) 
0 r= 1 m=r 

~ o  Vx(o) (o). 

[ ci'~(o) }d'~ (o) ] 
d 1 = c  a(O)/~q(O); d o = d  I c I (0)  Z 1(0) 

+ o ((t - -  r~) N - '  )] u (x, ~) d~; 

(4) 

where the rest of the notation is taken from [2]. It is seen from (4) that a pulse initially 
localized on the boundary spreads out as it propagates to the right. Its spatial distribu- 
tion widens and the maximum temperature decreases in time. Considering only the flrst-order 
approximation (the term outside of the integral), we see that 

1 ( 1 dot ) .  dx>O; 
Xmax=V2aot/dl; Umax = V'2"-a-----7- exp 2 dx ' do.~/O. (5) 

The higher-order approximations do not change the qualitative picture given by the first- 
order approximation. Because u(x, l) = a(t, x/V~)-~-6(1), the thermal flux at the wall at the 

initial instant of time is unbounded and for small t behaves as q(0, t) = ~-a/ut-s/2 + st" 
(~t) -a/u + o(i). When ca(0) = Xa(0) = i and do = Sm = 0, we have the solution for a purely 
Fourier medium. 

In a Maxwell medium the solution for small times has the form 
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2d~ 

(6) 

Like the temperature, the heat flux at the wall at the initial instant of time is a delta 
function. A discussion of the wave effects in the propagation of heat and the spatial wake 

is given below. 
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Equation (2) can be used to get the solution for the case of a unit temperature Jump at 
the boundary: u(0, t) = H(t). We have 

t 

. (~, 0 = J ~ (r, ~IVE.)  a~; 
0 

q (x, t) = j q (0, t - -  r) a x, dr; 
0 

q(O,O- V ~  pS(p) " 

(7) 

For small times we use a power series expansion in t and thereby obtain the solution for a 
Fourier medium: 

N t 

.(x, t)=m+(t, x)+q,-(t, x)+ tt \ r  [q~+(t--~, x) +,p-(t--~, x)l[#~(~)+ o(~N-')la~; 
/ = 1  0 

(8) 
I exp / :  erfc 4- 

V V. ;. 

~ i  N 
1 s~] f . - I / 2  q (x, t) = r I " ~  -t- ~=o _ 

r=l t m=r l ' ( m +  1/2) + o (t N - ' )  

The terms outside of the integrals in u(x, t) and q(x, t) define the first-order approxima- 
tion obtained in [3]. 

For a Maxwell medium the solution for a unit temperature jump at small t has the form 

t _ _ _  x 
to) 

( ) (  S u(x, t ) = e x p  --dl%,---x H t 

0 l// (~+xto 
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"+ t~=t l ( - - x  I texp ( - - d x ' ~ ) H ( t - - ~ ) [  [ V r ~ J  o 

t_ 2_ - " x 2 x2 

w o ~ v ~, - - J -  } J 

2 xZ 

WZ 

t_ x____ 

k~J (r) dr + 

exp ( - -  dl~,x ) dx + 1 ] + 

exp ( -  ax.~ (r - D) kt~] f~) a~] ; 

q(O, t )=~lo  I + _ mf " (9)  
r ~  1 ~ r  

The first two terms in u(x, t) define the first-order approximation of [3]; the other terms 
give hlgher-order approximations which do not change the wave nature of the heat propagation. 

Equation (2) shows that in the first two boundary-value problems for similar thermal 
functions, the memory of the medium comes in only through the function a(t, x/m), which 
can behave in different ways. For example, in a Maxwell medium for be > 0, the function 
a(t, x//~ao) has a delta-function part and an aperiodic spatial wake which leads to propaga- 
tion from a boundary inside the body of attenuated, undistorted thermal signal and also leads 
to the appearance era rapidly growing distorted diffusive heat signal. When be = 0, the 
function a(t, x/m) is an attenuated delta function for small times and this described the 
propagation of a damped, undistorted thermal signal inside the body. For imaginary be(d, 2 < 
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4dod2) and small times the diffusive wake in a(t, x/ar changes into a term with a spatial- 
ly oscillating wake [3], and this leads to another type of distorted thermal signal. In a 
medium wlth fading memory, the temperature at large times approaches that of an ordinary 
Fourier medium. We note that wave effects in a Maxwell medium suggest a different kind of 
problem: the propagation of a thermal signal either without distortion or with a given 
level of distortion and attenuation over a given distance. Finally, it would be necessary 
to create a medium with thermal memory having the right properties, particularly small damp- 
ing. 

At each point of a Maxwell mediumwith thermal memory, we put a source with strength 
proportional to the temperature (b = blu). All the above formulas remain valid if we re- 
place the expression for Ko(p) as follows: 

Ko(p)=([pCI(p) 
and we r e p l a c e  c (~) by  c (~) - - a o b l / ~ o .  For  b~ > O, 

a~ (10) 

t h e  f u n c t i o n  Ko(p)  d e s c r i b e s  a s o l u t i o n  
which is unbounded for t § ~ [Ko(p) § Jp -- aobl/%o]. Thus, this case describes in~principle 
a weakly absorbing or even amplifying thermal medium [dz = dl --d2aobl/(%oC1(0)), dl < 0], 
and this would allow the spatial transport of a thermal signal with amplification. In prac- 
tice such sources can be created in the medium by using an external field such as an elec- 
tric current, or electrostatic, magnetostatic, or electromagnetic fields, which act because 
of the dependence of the physical properties of the medium on temperature. Because of the 
strong attenuation of the wave part of the solution, the dependence of the physical proper- 
ties of the medium on temperature must be very sharp. Therefore, it is convenient to use the 
phase transition region where sharp changes in the properties of the medium occur. The 
action of the external fields can be increased with the help of amplifiers or the simultane- 
ous application of several external fields. 

We note that (I0) is also correct for a Fourier medium; in this case, do = do -- d~aobl/ 
(%oct(0)). If do < 0, then transport of a thermal signal with amplification can occur. It 
follows from (5) that in the propagation of a delta-function pulse, umax will start increas- 
ing after a certain time interval. Application of thermal materials with memory and small 
damping properties opens up new possibilities in the transport of heat; therefore, it is of 
great interest to try to find (or create) materials having these thermal memory effects. 

NOTATION 

%o, equilibrium thermal conductivity; Oo, density; Co, equilibrium heat capacity; e, in- 
ternal energy; eo, initial internal energy; T, temperature; ao = Xo/poCo, equilibrium thermal 
diffuslvlty; %(t), c(t), relaxation kernels for heat flux and internal energy; %~(t) = %(t)/ 
%o, c1(t) = c(t)/poCo, dimensionless relaxation kernels for heat flux and internal energy; L, 
L -I, operators for the Laplace transform and its inverse; p, Laplace transform variable; H(t), 
Heaviside unit step function; uo(t), ambient temperature; S(p) = [pA~(p)]-~; ~(t) Dirac 
delta function; c(n) = dnc1(0)/dtn; %(n) = dn%1(0)/dtn; sl = c~1)/c~(0) + %~1)/%si0); I~, 
modified Bessel function of the first kind of order one. 
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